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Models of Primary Productivity

* Present chlorophyll-based productivity models
focus on light absorption processes

» Variations in fluorescence quantum yield are
related to light utilization
- Related to nutrients and species composition

- Exploit this variability to improve estimation of
primary productivity

- Require averaging over some time period



Decorrelation Scales as a Function of
Cross-Shore Distance
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Decorrelation Scales in the California
Current

 Nearshore (within 200 km)
- SST = Chlorophyll
- Fluor./Chl. < Chlorophyll

» Imbalance between light harvesting and utilization

- Transition (200 - 400 km)

- All scales increase
- Coherent flow features (e.g., eddies)

+ Offshore (> 400 km)
- SST > Chlorophyll
- Fluor./Chl. = Chlorophyll

- Processes in balance



Why are SST and Chlorophyll Scales so
Different Offshore?

- Different physical processes controlling SST and
chlorophyll in the offshore region versus
nearshore in active upwelling zone

* Change in balance of light harvesting/utilization
suggests shift from non-equil. strategy nearshore

to equil. strategy

- Exploit variability in light and nutrients through
storage, buoyancy, etc. —» large diatom chains

- Offshore community —— small forms, flagellates




The Antarctic Polar Frontal Zone

* Mesoscale processes

- Strong meanders associated with bottom topography
* Large vertical velocities associated with these features
» Typical velocities on the order of 10's of meters/day

- Smaller scale instabilities associated with convergent
fronts
- Impacts

- Enhanced chlorophyll concentrations downstream of
where Antarctic Circumpolar Current interacts with
rough topography

- Disrupts equilibrium plankton community
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Summary of APFZ Data Sets

* Moorings
- 11 moorings recovered; one presumably lost to
intferaction with iceberg

- 2 optical sensor systems flooded:; 1 short
record

- 2 current meters lost; 2 short records
- B Microcat CTD records

+ Drifters
- 14 Satlantic optical drifters successfully
deployed
- 12 WOCE surface drifters deployed



Drifters in a Polar Front Meander
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Mooring Location
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Chlorophyll Time Series from Moorings
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Chlorophyll (mg/m°)

Time Series from All Moorings
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Sun-Stimulated Fluorescence Time
Series

Sun-Stimulated Fluorescence/Chlorophyll
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Patterns of the Spring Bloom

» Initial bloom triggered by stratification
- F/C increases briefly as phytoplankton photoadapt

* Bloom increases for about 20 days
- F/C declines to low values and remains nearly constant

* Bloom begins to decrease

- F/C remains constant

- Silicate limitation?

* Chlorophyll reaches baseline values for remainder
of season

- F/C begins to increase, especially as water column
stratifies further

- Iron limitation?
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The Antarctic Polar Frontal Zone

* Mesoscale processes
- Strong meanders associated with bottom
topography
* Large vertical velocities associated with these features
» Typical velocities on the order of 10's of meters/day

- Smaller scale instabilities associated with
convergent fronts
- Impacts

- Enhanced chlorophyll concentrations downstream
of where Antarctic Circumpolar Current interacts
with rough topography

- Disrupts equilibrium plankton community
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Chemostat Experiments

* Modified chemostat developed by Dale Kiefer
- Light source for growth follows diel cycle

- Non-saturating, pulsing source for measuring
changes in fluorescence yield

- Temperature and pH controlled

- Measure both AC (pulsed plus incubation) and DC
(pulsed) components

- Plan to add fast repetition rate fluorometer,
oxygen electrode



PAR sensor

FRR Fluorometer | Spectrophotometer probe
H pH & Temperature probe

Monochromator
light detector

Chopper D

Cooling jacket

Photomultiplier

L Lockin

(.

DC
AC

Monochromator | (-

Heat & light filters

___________________________ DC current measures the
___________________________ 1__ Dichroic fluorescence resulting from
___________________________ | mirror the monochromator pulsed
light.

AC current provides the
fluorescence resulting from
the sum of the incubation an
monochromator lights

Incubation light




PARmMol quanta n? s

Fluorescence yield, Volts

200

150

100

a1
o

0

11

10

...................................................................

...................................................................

8
212 212.1 212.2 212.3 212.4 212.5 212.6 212.7 212.8 2129 213

Time, day of year



Fluorescence yield, volts

Maximum fluorescence yield
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Fluorescence yield, r.u.
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Fluorescence yield
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Maximum diel fluorescence, Volts
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AC fluorescence, volts
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Preliminary Results

 Initial tests run with Dunaliella tertiolecta

- Subsequent runs will use more "representative” cultures

» Strong increase in fluor. yield as soon as "day”
begins, even though light levels are very low
- Reaction centers may be closing

* Rapid decline inyield, followed by slower decline
until solar noon

- Day photoadaptation

» Rapid decrease in yield just before “sunset”
- Opening of reaction centers?

* Rapid increase in yield

- Night photoadaptation?



High vs. Low Light/Growth Conditions

» Faster decrease in yield in morning under high
light conditions

» Evidence for increased photodamage under high
light

* Longer period of adaptation after dawn under low
growth conditions

» Evidence of photoadaptation on time scales of
days

* Indication of change in fluor. yield as function of
growth rate



Production, relative units

Relative evolution of P vs.E curves
derived from saturating PAR and
fluorescence efficiency values
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summary

* Improved models of primary productivity
essential to understand the linkages
between atmospheric CO, and ocean uptake

* Changes in climate forcing may shift
phytoplankton community composition

» Simple chlorophyll-based models of
productivity will not be adequate

* MODIS represents a significant step
forward in ocean remote sensing

* NPOESS/VIIRS represents a damaging
step backwards from MODIS



